Abstract

In this work central bursting in drawing and extrusion of metals is investigated. The analysis is based on a modified stress distribution within the die zone due to Shield (Shield, R. T., 1955, J. Mech. Phys. Solids, 3, pp. 246–258) together with Gurson–Tvergaard’s yield function (Tvergaard, V., 1981, Int. J. Fract., 17, pp. 389–407) and its associated flow rule for voided solids. The effects of hardening and evolution of void shape on void growth are considered. Various fracture criteria are employed to predict the process conditions at which central bursting occurs. The first criterion is due to Avitzur (Avitzur, B., 1968, ASME J. Eng. Ind., 90, pp. 79–91 and Avitzur, B., and Choi, J. C., 1986, ASME J. Eng. Ind., 108, pp. 317–321), the second and simplest criterion is based on vanishing mean stress while a suggested third criterion depends on the current value of the void volume fraction. Two other criteria which are basically due to Thomason’s internal necking condition (Thomason, P. F., 1990, Ductile Fracture of Metals, Pergamon, Oxford) as well as McClintock’s shear band formation criterion are applied (McClintock, F. A., Kaplan, S. M., and Berg, C. S., 1966, Int. J. Fract. Mech., 2, p. 614, and McClintock, F. A., 1968, in Ductility, ASM, Metals, Park, OH). The critical process conditions are predicted and compared with the available experimental data. Comparison showed that predictions based on the vanishing mean stress and the current void volume fraction criteria are closer to experiments than those based on Thomason’s internal necking and McClintock criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call