Abstract

This work demonstrates the potential of machine learning (ML) method to predict catalytic activity of transition metal complex precatalyst toward ethylene polymerization. For this purpose, 294 complexes and 15 molecular descriptors were selected to build the artificial neural network (ANN) model. The catalytic activity can be well predicted by the obtained ANN model, which was further validated by external complexes. Boruta algorithm was employed to explicitly decipher the importance of descriptors, illustrating the conjugated bond structure, and bulky substitutions are favorable for catalytic activity. The present work indicates that ML could give useful guidance for the new design of homogenous polyolefin catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.