Abstract

Casing wear is a serious problem in highly-deviated wells because serious wear will lead to casing deformation, drilling tool sticking and failure of subsequent operations. The purpose of this paper is to predict casing wear depth and evaluate its effect on casing strength degradation in highly-deviated well drilling operation. Special attention has been given to the algorithm to achieve the prediction and evaluation. The effect of tool joint on contact force distribution is considered in contact force model. Then a wear depth prediction model and its solution method are proposed based on crescent-shaped wear morphology and wear-efficiency model. Besides, strength degradation of worn casing is analyzed in bipolar coordinate system and the model is verified by finite element method. Therefore, the technology of casing wear prediction and residual strength evaluation is completed systematically. Then, to apply casing wear prediction and residual strength evaluation technologies to an actual highly-deviated well, casing wear experiment and friction coefficient experiment are carried out to obtain wear coefficient and friction coefficient. Finally, based on the established models as well as experimental results, the distribution of casing wear is predicted and residual strength is evaluated. The method presented in this paper will contribute greatly to casing wear prediction and evaluation in highly-deviated wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call