Abstract
Controlling carbon dioxide produced from green waste composting is a vital issue in response to carbon neutralization. However, there are few computational methods for accurately predicting carbon dioxide production from green waste composting. Based on the data collected, this study developed novel machine learning methods to predict carbon dioxide production from green waste composting and made a comparison among six methods. After eliminating the extreme outliers from the dataset, the Random Forest algorithm achieved the highest prediction accuracy of 88% in the classification task and showed the top performance in the regression task (root mean square error = 23.3). As the most critical factor, total organic carbon, with the Gini index accounting for about 59%, can provide guidance for reducing carbon emissions from green waste composting. These results show that there is great potential for using machine learning algorithms to predict carbon dioxide output from green waste composting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.