Abstract

Quantitative structure–retention relationship (QSRR) models correlating the retention times of fatty acid methyl esters in high resolution capillary gas chromatography and their structures were developed based on non-linear and linear modeling methods. Genetic algorithm (GA) was used for the selection of the variables that resulted in the best-fitted models. Gravitational index (G2), number of cis double bond (N cDB) and number of trans double bond (N tDB) were selected among a large number of descriptors. The selected descriptors were considered as inputs for artificial neural networks (ANNs) with three different weights update functions including Levenberg–Marquardt backpropagation network (LM-ANN), BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton backpropagation (BFG-ANN) and conjugate gradient backpropagation with Polak–Ribiére updates (CGP-ANN). Computational result indicates that the LM-ANN method has better predictive power than the other methods. The model was also tested successfully for external validation criteria. Standard error for the training set using LM-ANN was SE = 0.932 with correlation coefficient R = 0.996. For the prediction and validation sets, standard error was SE = 0.645 and SE = 0.445 and correlation coefficient was R = 0.999 and R = 0.999, respectively. The accuracy of 3–2–1 LM-ANN model was illustrated using leave multiple out-cross validations (LMO-CVs) and Y-randomization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.