Abstract

AbstractIn soil mechanics, prediction of soil properties is necessary due to the large-scale construction activities and time-consuming testing. California Bearing Ratio (CBR) is one of the soul parameters used as strength and stiffness indicator for subgrade soil. However, for investigating soil subgrade in the field, there is a need of more soil samples to be tested; it may be time-consuming and cumbersome task. Moreover, certain issues like lack of funding, unavailability of skilled labour and poor laboratory infrastructure to handle large number of samples put thrust on development of models to predict strength with reference to certain amount of data. Nowadays, the potentiality of prediction models has been gaining importance in every discipline. Numerous tools and techniques were evolved focusing on model development; which will be able to perform iteration-based techniques. In this study, CBR values of subgrade along a proposed road are collected. Nearly, 480 samples were collected in which 15 samples were used for comparison (control value). The results revealed that the artificial neural networks (ANN) prediction models were significant promising tool for predicting CBR of subgrade soil by using index properties as input parameters.KeywordsCalifornia Bearing Ratio (CBR)Artificial neural networks (ANN)BackpropagationPavements

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.