Abstract

In this study, behaviors of metals and their effects on phosphorus recovery by calcium phosphate were investigated by the laboratory and pilot experiments as well as by the modified thermodynamic model. Batch experimental results indicated that the efficiency of phosphorus recovery decreased with the increase in metal content and more than 80% phosphorus can be recovered with a Ca/P molar ratio of 3.0 and a pH of 9.0 for the supernatant of an anaerobic tank in the A/O process with the influent containing a high metal level. The mixture of amorphous calcium phosphate (ACP) and dicalcium phosphate dihydrate (DCPD) was assumed to be the precipitated product with an experimental time of 30 min. A modified thermodynamic model was developed using ACP and DCPD as the precipitated products, and the correction equations were incorporated to simulate the short-term precipitation of calcium phosphate based on the experimental results. From the perspective of maximizing both the efficiency of phosphorus recovery and the quality or purity of the recovered product, the simulation results showed that a pH of 9.0 and a Ca/P molar ratio of 3.0 were the optimized operational condition for phosphorus recovery by calcium phosphate when the influent metal content was at the level of actual municipal sewage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call