Abstract

Buckwheat is an important minor grain crop with medicinal and edible functions. The accurate judgment of buckwheat maturity is beneficial to reduce harvest losses and improve yield. With the rapid development of unmanned aerial vehicle (UAV) technology, it has been widely used to predict the maturity of agricultural products. This paper proposed a method using recursive feature elimination cross-validation (RFECV) combined with multiple regression models to predict the maturity of buckwheat in UAV-RGB images. The images were captured in the buckwheat experimental field of Shanxi Agricultural University in Jinzhong, Northern China, from September to October in 2021. The variety was sweet buckwheat of "Jinqiao No. 1". In order to deeply mine the feature vectors that highly correlated with the prediction of buckwheat maturity, 22 dimensional features with 5 vegetation indexes, 9 color features, and 8 texture features of buckwheat were selected initially. The RFECV method was adopted to obtain the optimal feature vector dimensions and combinations with six regression models of decision tree regression, linear regression, random forest regression, AdaBoost regression, gradient lifting regression, and extreme random tree regression. The coefficient of determination (R2) and root mean square error (RMSE) were used to analyze the different combinations of the six regression models with different feature spaces. The experimental results show that the single vegetation index performed poorly in the prediction of buckwheat maturity; the prediction result of feature space "5" combined with the gradient lifting regression model performed the best; and the R2 and RMSE were 0.981 and 1.70 respectively. The research results can provide an important theoretical basis for the prediction of the regional maturity of crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.