Abstract

Foaming of liquid aluminium by addition of foaming agent (TiH2 particles) is numerically simulated using population balance equations. Phenomena such as hydrogen release by the TiH2 particles, heterogeneous nucleation of bubbles in oxide surface cavities, and diffusion based bubble growth are modelled. A simple mass transfer coefficient, which varies inversely with the bubble size is used to estimate the bubble growth rate. Simulation is performed to study the effect of TiH2 content on the final bubble size distribution, total number of bubbles and average bubble size. In general, the average properties of the predicted distributions are close to the experimental values, whereas the spread in the bubble size is observed to be considerably narrower for the predicted values. The deviation in the spread of the distributions is attributed to the inverse bubble size dependent growth rate and non-inclusion of bubble coalescence in the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.