Abstract

Broadband shock-associated noise is a component of jet noise generated by supersonic jets operating offdesign. It is characterized by multiple broadband peaks and dominates the total noise at large angles to the jet downstream axis. A new model is introduced for the prediction of broadband shock-associated noise that uses the solution of the Reynolds-averaged Navier-Stokes equations. The noise model is an acoustic analogy based on the linearized Euler equations. The equivalent source terms depend on the product of the fluctuations associated with the jet's shock-cell structure and the turbulent velocity fluctuations in the jet shear layer. The former are deterministic and are obtained from the Reynolds-averaged Navier-Stokes solution. A statistical model is introduced to describe the properties of the turbulence. Only the geometry and operating conditions of the nozzle need to be known to make noise predictions. This overcomes the limitations and empiricism present in previous broadband shock-associated noise models. Results for various axisymmetric circular nozzles and a rectangular nozzle operating at various conditions are compared with experimental data to validate the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.