Abstract

PurposeAccurate identification of primary breast cancer and axillary positive-node response to neoadjuvant chemotherapy (NAC) is important for determining appropriate surgery strategies. We aimed to develop combining models based on breast multi-parametric magnetic resonance imaging and clinicopathologic characteristics for predicting therapeutic response of primary tumor and axillary positive-node prior to treatment. Materials and methodsA total of 268 breast cancer patients who completed NAC and underwent surgery were enrolled. Radiomics features and clinicopathologic characteristics were analyzed through the analysis of variance and the least absolute shrinkage and selection operator algorithm. Finally, 24 and 28 optimal features were selected to construct machine learning models based on 6 algorithms for predicting each clinical outcome, respectively. The diagnostic performances of models were evaluated in the testing set by the area under the curve (AUC), sensitivity, specificity, and accuracy. ResultsOf the 268 patients, 94 (35.1 %) achieved breast cancer pathological complete response (bpCR) and of the 240 patients with clinical positive-node, 120 (50.0 %) achieved axillary lymph node pathological complete response (apCR). The multi-layer perception (MLP) algorithm yielded the best diagnostic performances in predicting apCR with an AUC of 0.825 (95 % CI, 0.764–0.886) and an accuracy of 77.1 %. And MLP also outperformed other models in predicting bpCR with an AUC of 0.852 (95 % CI, 0.798–0.906) and an accuracy of 81.3 %. ConclusionsOur study established non-invasive combining models to predict the therapeutic response of primary breast cancer and axillary positive-node prior to NAC, which may help to modify preoperative treatment and determine post-NAC surgery strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.