Abstract

BackgroundClozapine is highly effective in treatment-resistant schizophrenia, although, there remains significant variability in the response to this drug. To better understand this variability, the objective of this study was to predict brain extracellular fluid (ECF) concentrations and receptor occupancy of clozapine and norclozapine in human central nervous system by translating plasma and brain ECF pharmacokinetic (PK) relationships in the rat and coupling these with known human disposition of clozapine in the plasma.MethodsUnbound concentrations of clozapine and norclozapine were measured in rat brain ECF using quantitative microdialysis after subcutaneous administration of a 10 mg/kg single dose of clozapine or norclozapine. These data were linked with plasma concentrations obtained in the same rats to develop a plasma–brain ECF compartmental model. Parameters describing brain ECF disposition were then allometrically scaled and linked with published human plasma PK to predict human ECF concentrations. Subsequently, prediction of human receptor occupancy at several CNS receptors was based on an effect model that related the predicted ECF concentrations to published concentration-driven receptor occupancy parameters.ResultsA one compartment model with first order absorption and elimination best described clozapine and norclozapine plasma concentrations in rats. A delay in the transfer of clozapine and norclozapine from plasma to the brain ECF compartment was captured using a transit compartment model approach. Human clozapine and norclozapine concentrations in brain ECF were simulated, and from these the median percentage of receptor occupancy of dopamine-2, serotonin-2A, muscarinic-1, alpha-1 adrenergic, alpha-2 adrenergic and histamine-1 for clozapine, and dopamine-2 for norclozapine were consistent with values reported in the literature.ConclusionsA PK model that relates clozapine and norclozapine disposition in rat plasma and brain, including blood–brain barrier transport, was developed. Using allometry and published human plasma PK, the model was successfully translated to predict clozapine and norclozapine concentrations and accordant receptor occupancy of both agents in human brain. These predicted exposure and occupancy measures at several receptors that bind clozapine may be employed to extend our understanding of clozapine’s complex behavioral effects in humans.Electronic supplementary materialThe online version of this article (doi:10.1186/1479-5876-12-203) contains supplementary material, which is available to authorized users.

Highlights

  • Clozapine is highly effective in treatment-resistant schizophrenia, there remains significant variability in the response to this drug

  • A recent study measured clozapine and its N-desmethyl metabolite, norclozapine, in extracellular fluid (ECF) of rat medial prefrontal cortex using quantitative microdialysis, and these results provided evidence of net efflux from brain across the blood–brain barrier (BBB) [13]

  • Rat population pharmacokinetics A two-compartment model with first order absorption best described clozapine pharmacokinetics in rats using a central compartment for plasma concentrations and a peripheral compartment for brain concentrations

Read more

Summary

Introduction

Clozapine is highly effective in treatment-resistant schizophrenia, there remains significant variability in the response to this drug. Over the past 50 years, pharmacotherapeutic support has been instrumental in managing primarily the positive symptoms of schizophrenia It hinges on suppression of a central circuitry dysfunction that can be normalized by antagonism of dopamine D2 receptors in the striatum [2]. Introduction of clozapine, the first so-called atypical antipsychotic approximately 25 years ago, represented a significant advance in our understanding of schizophrenia from a systems biology perspective in that this drug did not have the typical side effects of the first generation neuroleptics. This reduction in side effects was attributed to higher 5HT2A than D2 receptor binding [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call