Abstract

Bond wire fatigue is one of the dominant failure mechanisms in insulated-gate bipolar transistor (IGBT) modules under cyclic stresses. However, there are still major challenges ahead to achieve a realistic bond wire lifetime prediction in field operation. This paper proposes a Monte Carlo based analysis method to predict the lifetime consumption of bond wires of IGBT modules in a photovoltaic (PV) inverter. The variations in IGBT parameters (e.g., on-state collector-emitter voltage), lifetime models, and environmental and operational stresses are taken into account in the lifetime prediction. The distribution of the annual lifetime consumption is estimated based on a long-term annual stress profile of solar irradiance and ambient temperature. The proposed method enables a more realistic lifetime prediction with a specified confidence level compared to the state-of-the-art approaches. A study case of IGBT modules in a 10-kW three-phase PV inverter is given to demonstrate the procedure of the method. The obtained results of the lifetime distribution can be used to justify the selection of IGBTs for the PV inverter applications and the corresponding risk of unreliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.