Abstract

Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error (MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.