Abstract

Current empirical and semi-empirical based design manuals are restricted to the analysis of simple building configurations against blast loading. Prediction of blast loads for complex geometries is typically carried out with computational fluid dynamics solvers, which are known for their high computational cost. The combination of high-fidelity simulations with machine learning tools may significantly accelerate processing time, but the efficacy of such tools must be investigated. The present study evaluates various machine learning algorithms to predict peak overpressure and impulse on a protruded structure exposed to blast loading. A dataset with over 250,000 data points extracted from ProSAir simulations is used to train, validate, and test the models. Among the machine learning algorithms, gradient boosting models outperformed neural networks, demonstrating high predictive power. These models required significantly less time for hyperparameter optimization, and the randomized search approach achieved relatively similar results to that of grid search. Based on permutation feature importance studies, the protrusion length was considered a significantly more influential parameter in the construction of decision trees than building height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.