Abstract
Frequency and scale of the blasting events are increasing to boost limestone production. Mines are approaching close to inhabited areas due to growing population and limited availability of land resources which has challenged the management to go for safe blasts with special reference to opencast mining. The study aims to predict the distance covered by the flyrock induced by blasting using artificial neural network (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design and geotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as input parameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets of experimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used for testing and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA, as well as further calculated using motion analysis of flyrock projectiles and compared with the observed data. Back propagation neural network (BPNN) has been proven to be a superior predictive tool when compared with MVRA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rock Mechanics and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.