Abstract
Pure component adsorption isotherms for CO2 and N2 on the prepared nitrogen enriched carbon were evaluated using a static volumetric analyzer at four different adsorption temperatures ranging from 30–100 °C and were then correlated with three pure component adsorption isotherm models, namely, Langmuir, Sips, and dual-site Langmuir (DSL) models. Adsorption equilibria of binary CO2–N2 adsorption was then predicted by extending Sips and DSL equations empirically along with the usage of ideal adsorbed solution theory and was compared with experimental data obtained from the breakthrough curves through various phase diagrams. Breakthrough data for binary system were obtained at four different CO2 feed concentrations (5–12.5% by volume) and four adsorption temperatures (30–100 °C) using a fixed-bed reactor. Among three adsorption isotherms models used to investigate the equilibrium data of pure component system, Sips and DSL adsorption isotherm models fitted well, indicating energetically heterogeneous adsorben...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.