Abstract

We present a method based on the first-order Markov models for predicting simple beta-turns and loops containing multiple turns in proteins. Sequences of 338 proteins in a database are divided using the published turn criteria into the following three regions, namely, the turn, the boundary, and the nonturn ones. A transition probability matrix is constructed for either the turn or the nonturn region using the weighted transition probabilities computed for dipeptides identified from each region. There are two such matrices constructed for the boundary region since the transition probabilities for dipeptides immediately preceding or following a turn are different. The window used for scanning a protein sequence from amino (N-) to carboxyl (C-) terminal is a hexapeptide since the transition probability computed for a turn tetrapeptide is capped at both the N- and C- termini with a boundary transition probability indexed respectively from the two boundary transition matrices. A sum of the averaged product of the transition probabilities of all the hexapeptides involving each residue is computed. This is then weighted with a probability computed from assuming that all the hexapeptides are from the nonturn region to give the final prediction quantity. Both simple beta-turns and loops containing multiple turns in a protein are then identified by the rising of the prediction quantity computed. The performance of the prediction scheme or the percentage (%) of correct prediction is evaluated through computation of Matthews correlation coefficients for each protein predicted. It is found that the prediction method is capable of giving prediction results with better correlation between the percent of correct prediction and the Matthews correlation coefficients for a group of test proteins as compared with those predicted using some secondary structural prediction methods. The prediction accuracy for about 40% of proteins in the database or 50% of proteins in the test set is better than 70%. Such a percentage for the test set is reduced to 30 if the structures of all the proteins in the set are treated as unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.