Abstract

In this paper, an inferential sensor for the final viscosity of an industrial batch polymerization reaction is developed using multivariate statistical methods. This inferential sensor tackles one of the main problems of chemical batch processes: the lack of reliable online quality estimates. In a data preprocessing step, all batches are brought to equal lengths and significant batch events are aligned via dynamic time warping. Next, the optimal input measurements and optimal model order of the inferential multiway partial least squares (MPLS) model are selected. Finally, a full batch model is trained and successfully validated. Additionally, intermediate models capable of predicting the final product quality after only 50% or 75% batch progress are developed. All models provide accurate estimates of the final polymer viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.