Abstract
To determine if magnetic resonance (MR) imaging can be used to predict axillary lymph node status in patients with breast cancer. Fifty-one women with primary invasive breast cancer underwent dynamic contrast material-enhanced MR imaging of the breast Region-of-interest (ROI) analysis was performed on parametric images obtained with kinetic modeling of the data. Large and automated ROIs were selected. Typical enhancement ratios that represented the relative increase in mean pixel signal intensity were calculated for each ROI. Stepwise logistic regression analysis was applied to identify prognostic factors of axillary node status. Receiver operating characteristic analysis was performed and a Brier score and calibration curve were calculated to assess the diagnostic efficacy and predictive capability of the logistic regression model. The maximum enhancement ratio of the automated ROI was found to be the strongest predictor of node status (P < .001). Patient age (P = .007) and ROI size (P = .045) were also significant predictor variables. The model showed good accuracy (area beneath the fitted binormal receiver operating characteristic curve [Az] = 0.90; Brier score, 0.133). In 12 (24%) of the patients, a less than 5% or greater than 95% probability of positive-node status was correctly identified. The suggested predictive model may decrease the need for surgical staging of the axilla in patients with breast cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.