Abstract

A successful implementation of gas foil bearings (GFBs) into high temperature turbomachinery requires adequate thermal management to maintain system reliability and stability. The most common approach for thermal management in a GFB-rotor system is to supply pressurized air at one end of the bearing to remove hot spots in the bearings and control thermal growth of components. This technical brief presents test data for a laboratory rotor-GFB system operating hot to identify the flow characteristics of axial cooling streams flowing through the thin film region and underneath the top foil. A bulk flow model is used for description of the fluid motion and includes the Hirs’ friction factor formulation for smooth surfaces. Laminar flow prevails through the thin film gas region; while for the cooling flow between the top foil and bearing housing, a transition from laminar flow to turbulent flow occurs as the cooling flow rate increases. Large cooling flow rate and the ensuing turbulent flow conditions render limited effectiveness in controlling temperatures in a test rotor-GFB system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.