Abstract

This paper presents a thermo-mechanical model to predict the thermal histories and the longitudinal residual stress difference at two sides of the butting surfaces using a factor named advancing retreating factor. This model allows taking into account of frictional heating dependent on both the temperature and the velocity of the tool, as well as heat generation due to plastic deformation dependent on temperature. The mechanical loads caused by the tool are added to the model for the mechanical analysis and the uncoupled thermo-mechanically equations are solved using a nonlinear finite element code ABAQUS. The numerical results showed that the longitudinal residual tensile stresses are asymmetrically distributed at different sides of the weld line due to the effect of the unsymmetrical temperature distribution and the tool forces. The calculated results have good agreement with experimental data that are presented in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.