Abstract
In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir crude, one of Iranian heavy oil reserves, under pressure depletion and CO2 injection conditions. The model parameters, obtained from sensitivity analysis, were applied in the thermodynamic model. It has been found that the solid model results describe the experimental data reasonably well under pressure depletion conditions. Also, a significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. In particular, for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed, which could not be found in the available literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.