Abstract

Apoptosis proteins are related to many diseases. Obtaining the subcellular localization information of apoptosis proteins is helpful to understand the mechanism of diseases and to develop new drugs. At present, the researchers mainly focus on the primary protein sequences, so there is still room for improvement in the prediction accuracy of the subcellular localization of apoptosis proteins. In this paper, a new method named ERT-ECT-PSSM-IS is proposed to predict apoptosis proteins based on the position-specific scoring matrix (PSSM). First, the local and global features of different directions are extracted by evolutionary row transformation (ERT) and cross-covariance of evolutionary column transformation (ECT) based on PSSM (ERT-ECT-PSSM). Second, an improved isometric mapping algorithm (I-SMA) is used to eliminate redundant features. Finally, we adopt a support vector machine (SVM) to classify our results, and the prediction accuracy is evaluated by jackknife cross-validation tests. The experimental results show that the proposed method not only extracts more abundant feature expression but also has better predictive performance and robustness for the subcellular localization of apoptosis proteins in ZD98, ZW225, and CL317 databases. Graphical abstract Framework of the proposed prediction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.