Abstract

We explain the ubiquity and extremely slow evolution of non-Gaussian out-of-equilibrium distributions for the Hamiltonian mean-field model, by means of traditional kinetic theory. Deriving the Fokker-Planck equation for a test particle, one also unambiguously explains and predicts striking slow algebraic relaxation of the momenta autocorrelation, previously found in numerical simulations. Finally, angular anomalous diffusion are predicted for a large class of initial distributions. Non-extensive statistical mechanics is shown to be unnecessary for the interpretation of these phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.