Abstract
Chemical cross-linking and mass spectrometry is of growing use for establishment of distance constraints on protein conformations and interactions. Whereas intraprotein cross-links can arise from proteins in isolation, interprotein cross-links reflect proximity of two interacting proteins in the sample. Prediction of expected ratios of the number of interprotein to intraprotein cross-links is hindered by lacking comprehensive knowledge on the interactome network and global occupancy levels for all interacting complex subunits. Here we determine the theoretical number of possible inter- and intraprotein cross-links in available PDB structures of proteins bound in complexes to predict a maximum expected fraction of interprotein cross-links in large scale in vivo cross-linking studies. We show how the maximum fraction can guide interpretation of reported interprotein fractions with respect to the extent of sample protein binding, comparing whole cell and lysate cross-linked samples as an example. We also demonstrate how an observation of interprotein cross-link fractions greater than the maximum value can result from the presence of false positive cross-links which are predominantly interprotein, their number estimable from the observed surplus fraction of interprotein cross-links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.