Abstract

Predictions of the results of alpha-decay energy (Q-value) and decay half-life (t1/2) are made for experimentally unknown alpha decaying systems of superheavy nuclei. Following a theoretical method proposed recently by B. Sahu, the calculations are performed using the analytical expression of the potential that simulates the nuclear+Coulomb potential of the α + daughter nucleus system. The Q-value considered as resonance energy is calculated using the behavior of the wave function, and the t1/2 is expressed analytically using the exact solutions of the potential. A global formula for the potential parameter as a function of neutron number in a given isotopic chain of nuclei is developed for the calculation of Q and t1/2. Calculations of the latter two quantities are made for the decay chain of newly discovered superheavy elements 294117, 293117, and for the isotopic chains of Z = 74 and 102. Predictions of the same parameters are made for Z = 113 and some other still unknown superheavy nuclei. It is observed that the global formula works well in evaluating correct results of Q and t1/2 for various alpha emitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.