Abstract
Social media corpora, including the textual output of blogs, forums, and messaging applications, provide fertile ground for linguistic analysis material diverse in topic and style, and at Web scale. We investigate manifest properties of textual messages, including latent topics, psycholinguistic features, and author mood, of a large corpus of blog posts, to analyze the impact of age, emotion, and social connectivity. These properties are found to be significantly different across the examined cohorts, which suggest discriminative features for a number of useful classification tasks.We build binary classifiers for old versus young bloggers, social versus solo bloggers, and happy versus sad postswith high performance. Analysis of discriminative features shows that age turns upon choice of topic, whereas sentiment orientation is evidenced by linguistic style. Good prediction is achieved for social connectivity using topic and linguistic features, leaving tagged mood a modest role in all classifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.