Abstract

Based on vortex theory, we experimentally and directly predict sound sources distributing in the flow field and determine the sound pressure level as a result of the spatial integration of sound sources. In employing this direct evaluation method for the aeroacoustic sound, the problem is that a large integration area is required to minimize errors caused by the sudden truncation of the integration area; we overcome it by adopting and applying a modified formula that neglects the quadrupole sound under the condition that the dipole sound is dominant at a low Mach number. Through the flow field measurement using a time-resolved particle image velocimetry (TR-PIV) technique, we will clearly demonstrate the feasibility of our method and the distribution of dipole sound sources in the vicinity of a body even if a comparatively small integration area must be taken. In this basic study, a circular cylinder with a diameter of 6.0 mm is used; the spatially integrated sound pressure is compared with the actual sound pressure which is measured with a microphone. Further, the sound sources evaluated using only the flow field are determined, which give us detailed information about the amplitude and phase of the sound source structure. This direct evaluation method for the dipole sound is applicable to a more complex body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call