Abstract
This study presents comprehensive studies on practical means to predict aerial-image motion blurs due to the flying vehicle dynamics, including flying altitude; cruising speed; and angular velocities and finally installed camera characteristics; such as, frame rate and image size. The resulting predictions of blur values are in-turn used to generate blurry images to be fed as input data for later use in a de-blurring-in-the-loop of a Mono-simultaneous localization and mapping system. The whole process is coordinated by means of an integrated aerial virtual environment. The integrated aerial virtual environment consists of a three-dimensional graphical engine which could communicate with a full six-degrees of freedom aircraft dynamic simulator to precisely generate trajectories of the flying vehicle. Any accumulated real-time image taken by the camera installed on the aircraft during its mission considers the relevant vehicle states for necessary adjustments. We practically exploit C++, High-Level Shader Language, as well as JSBSim to expand the components of the package. Extensive case- studies show that the developed approach is quite effective in controlled environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.