Abstract
Advanced oxidation processes, like UV/H2O2 oxidation, are important barriers against organic micro pollutants in drinking water treatment. In order to guarantee safe drinking water, it is important to be able to predict the reactors' performance to adjust the operating conditions to the actual influent water characteristics (like UV transmission) and lamp performance. Therefore, a design tool was developed, which is based on a kinetic model that describes and predicts the direct photolysis and oxidation of organic compounds in pilot experiments, using Low Pressure (LP) UV-lamps. This model has been combined with computational fluid dynamics (CFD), in order to be able to accurately predict the results of pilot and full scale installations, and also to design reactor systems. The model was applied to three model compounds (atrazine, ibuprofen and NDMA) in two different pilot reactors, and it has been shown that reactor performance can be fairly predicted by applying this ‘UVPerox’ model. The model takes into account the water quality and power of the lamps, and the properties of the compounds involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.