Abstract
Given the necessity and urgency in removing organic pollutants such as malachite green (MG) from the environment, it is vital to screen high-capacity adsorbents using artificial neural network (ANN) methods quickly and accurately. In this study, a series of ZIF-67 were synthesized, which adsorption properties for organic pollutants, especially MG, were systematically evaluated and determined as 241.720 mg g−1 (25 ℃, 2 h). The adsorption process was more consistent with pseudo-second-order kinetics and Langmuir adsorption isotherm, which correlation coefficients were 0.995 and 0.997, respectively. The chemisorption mechanism was considered to be π-π stacking interaction between imidazole and aromatic ring. Then, a Python-based neural network model using the Limited-memory BFGS algorithm was constructed by collecting the crucial structural parameters of ZIF-67 and the experimental data of batch adsorption. The model, optimized extensively, outperformed similar Matlab-based ANN with a coefficient of determination of 0.9882 and mean square error of 0.0009 in predicting ZIF-67 adsorption of MG. Furthermore, the model demonstrated a good generalization ability in the predictive training of other organic pollutants. In brief, ANN was successfully separated from the Matlab platform, providing a robust framework for high-precision prediction of organic pollutants and guiding the synthesis of adsorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.