Abstract

The adsorption of 3 barbiturates--phenobarbital, mephobarbital, and primidone--from simulated intestinal fluid (SIF), without pancreatin, by activated carbon was studied using the rotating bottle method. The concentrations of each drug remaining in solution at equilibrium were determined with the aid of a high-performance liquid chromatography (HPLC) system employing a reversed-phase column. The competitive Langmuir-like model, the modified competitive Langmuir-like model, and the LeVan-Vermeulen model were each fit to the data. Excellent agreement was obtained between the experimental and predicted data using the modified competitive Langmuir-like model and the LeVan-Vermeulen model. The agreement obtained from the original competitive Langmuir-like model was less satisfactory. These observations are not surprising because the competitive Langmuir-like model assumes that the capacities of the adsorbates are equal, while the other 2 models take into account the differences in the capacities of the components. The results of these studies indicate that the adsorbates employed are competing for the same binding sites on the activated carbon surface. The results also demonstrate that it is possible to accurately predict multicomponent adsorption isotherms using only single-solute isotherm parameters. Such prediction is likely to be useful for improving in vivo/in vitro correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.