Abstract

The biotic ligand model (BLM) and the toxicokinetic-toxicodynamic (TK-TD) model are essential in predicting the acute toxicity of metals in various species and exposure conditions; however, these models are usually separately utilized. In this study, a mechanistic TK-TD model was developed to predict the acute toxicity of 10−6M Cd and 10−6M Pb to zebrafish (Danio rerio) larvae. The novel approach links the BLM with relevant TK processes to simulate the bioaccumulation processes of Cd or Pb as a function of the maximum uptake rate of each metal, the affinity constants, and the concentrations of free metal ions and H+ in test solutions. Results showed that the refined TK-TD model can accurately predict the accumulation and acute toxicity of Cd and Pb to zebrafish larvae at pH 5.5, 6.5, and 7.0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.