Abstract

Predicting toxicity quantitatively, using Quantitative Structure Activity Relationships (QSAR), has matured over recent years to the point that the predictions can be used to help identify missing comparison values in a substance’s database. In this manuscript we investigate using the lethal dose that kills fifty percent of a test population (the LD50) for determining relative toxicity of a number of substances. In general, the smaller the LD50 value, the more toxic the chemical, and the larger the LD50 value, the lower the toxicity. When systemic toxicity and other specific toxicity data are unavailable for the chemical(s) of interest, during emergency responses, LD50 values may be employed to determine the relative toxicity of a series of chemicals. In the present study, a group of chemical warfare agents and their breakdown products have been evaluated using four available rat oral QSAR LD50 models. The QSAR analysis shows that the breakdown products of Sulfur Mustard (HD) are predicted to be less toxic than the parent compound as well as other known breakdown products that have known toxicities. The QSAR estimated break down products LD50 values ranged from 299 mg/kg to 5,764 mg/kg. This evaluation allows for the ranking and toxicity estimation of compounds for which little toxicity information existed; thus leading to better risk decision making in the field.

Highlights

  • From World War I to 1968, the United States produced chemical weapons and warfare agents as a deterrent against use of similar weapons by other countries

  • This process creates several breakdown products during and after the neutralization. The majority of these breakdown products do not have sufficient toxicity data to properly assess the human health impacts related to their exposure or to select appropriate personnel protective equipment (PPE) which will ensure the safety of the personnel

  • Toxicity Prediction by Komputer Assisted Technology (TOPKAT) Quantitative Structure Activity Relationships (QSAR) models have been used for the estimation of potential toxicity such as carcinogenicity, mutagenicity, developmental toxicity, LD50, LOAELs and skin sensitization

Read more

Summary

Introduction

From World War I to 1968, the United States produced chemical weapons and warfare agents as a deterrent against use of similar weapons by other countries. Congress mandated that the Department of Defense be responsible for establishing a Chemical and Biological Defense (CBD) program, U.S Code Title 50, Sections 1521 through 153, and provide for chemical weapons disposal and destruction In accordance with this congressional mandate the Center for Disease Control and Prevention’s (CDC), Environmental Public Health Readiness Branch (EPHRB), Chemical Weapons Elimination section has been tasked with overseeing the Army’s destruction of chemical weapons to ensure that the general population, worker population and environment are protected. The Pueblo Chemical Agent Pilot Plant (PCAPP) plans to utilize neutralization processes to destroy the HD stored at the Pueblo Chemical Army Depot (PCAD). This process creates several breakdown products during and after the neutralization. The majority of these breakdown products do not have sufficient toxicity data to properly assess the human health impacts related to their exposure or to select appropriate personnel protective equipment (PPE) which will ensure the safety of the personnel

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.