Abstract

The development of selective inhibitors of the clinically relevant human Carbonic Anhydrase (hCA) isoforms IX and XII has become a major topic in drug research, due to their deregulation in several types of cancer. Indeed, the selective inhibition of these two isoforms, especially with respect to the homeostatic isoform II, holds great promise to develop anticancer drugs with limited side effects. Therefore, the development of in silico models able to predict the activity and selectivity against the desired isoform(s) is of central interest. In this work, we have developed a series of machine learning classification models, trained on high confidence data extracted from ChEMBL, able to predict the activity and selectivity profiles of ligands for human Carbonic Anhydrase isoforms II, IX and XII. The training datasets were built with a procedure that made use of flexible bioactivity thresholds to obtain well-balanced active and inactive classes. We used multiple algorithms and sampling sizes to finally select activity models able to classify active or inactive molecules with excellent performances. Remarkably, the results herein reported turned out to be better than those obtained by models built with the classic approach of selecting an a priori activity threshold. The sequential application of such validated models enables virtual screening to be performed in a fast and more reliable way to predict the activity and selectivity profiles against the investigated isoforms.

Highlights

  • Human Carbonic Anhydrases represent a family of targets widely studied for their role both in homeostasis and in a number of pathological conditions [1]

  • Activity profiling In this study, we trained and tested machine learning models based on molecular descriptors to predict activity and selectivity profiles of a set of reported human Carbonic Anhydrases inhibitors

  • Compounds with activity reported for Human Carbonic Anhydrases (hCA) II, IX and XII were downloaded from the ChEMBL database [22]

Read more

Summary

Introduction

Human Carbonic Anhydrases (hCA) represent a family of targets widely studied for their role both in homeostasis and in a number of pathological conditions [1]. All catalytic hCAs present a highly conserved inner binding cavity coordinating a zinc ion. The vast majority of known hCA inhibitors present a zinc binding group (ZBG), which is very often a primary sulfonamide [2]. The first hCA inhibitors bearing a sulfonamide-based ZBG were developed in the 1940s, with acetazolamide being the first drug approved in 1954 [2]. These molecules tended to have short half-lives and to be active on other isoforms with a physiological role in homeostasis, resulting in undesirable side effects [2]. A considerable interest has arisen for the clinically relevant isoforms IX and XII (hCA IX and hCA XII, respectively), which have been found to be overexpressed in several types of cancers, and especially in hypoxic tumors [3, 4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.