Abstract

Acrylamide (ACR), a neurotoxin with carcinogenic properties that can affect fertility, is commonly found in fried and baked foods such as potato chips. This study was carried out to predict the ACR content in fried and baked potato chips using near-infrared (NIR) spectroscopy. Effective wavenumbers were identified using competitive adaptive reweighted sampling (CARS) and the successive projections algorithm (SPA). Six wavenumbers (12799 cm−1, 12007 cm−1, 10944 cm−1, 10943 cm−1, 5801 cm−1, and 4332 cm−1) were selected using the ratio (λi/λj) and difference (λi-λj) of any two wavenumbers from the CARS and SPA results. First, partial least squares (PLS) models were established based on full spectral wavebands (12799–4000 cm−1), and the prediction models were subsequently redeveloped based on effective wavenumbers to predict ACR content. Results showed that the full and selected wavenumbers-based PLS models obtained the coefficient of determination (R2) of 0.7707 and 0.6670, respectively, and the root mean square errors of prediction (RMSEP) of 53.0442 μg/kg and 64.3810 μg/kg, respectively, in the prediction sets. The results of this work demonstrate the suitability of NIR spectroscopy as a non-destructive method for predicting ACR content in potato chips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.