Abstract
The present paper mainly describes the prediction methodology to determine the Cerchar Abrasiveness Index and Penetration Rate related to rock excavation using simple geomechanical parameters as predictors. As abrasiveness of rocks is influenced by many geomechanical parameters, an attempt is made to use these parameters for its prediction using Multivariate Regression Analysis and Artificial Neural Networking. Abrasiveness Index as well as Penetration Rate are very vital in deciding the economics of the excavations as they directly govern the wear and tear of drill bit. It was observed that ANN shows a better prediction capability than MVRA using UCS, Point load index, P wave velocity and Young’s modulus as predictors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.