Abstract
To develop a prediction model that could risk stratify abdominal aortic aneurysms (AAAs) into high and low growth rate groups, using machine learning algorithms based on variables from different pathophysiological fields. A cohort of 40patients with small AAAs (maximum diameter 32-53mm) who had at least an initial and a follow-up CT scan (median follow-up 12months, range 3-36months) were included. 29 input variables from clinical, biological, morphometric, and biomechanical pathophysiological aspects extracted for predictive modeling. Collected data were used to build two supervised machine learning models. A gradient boosting (XGboost) and a support vector machines (SVM) algorithm were trained with 60% and tested with 40% of the data to predict which AAA would achieve a growth rate higher than the median of our study cohort. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) were used for the evaluation of the developed algorithms. XGboost achieved the highest AUC in predicting high compared to low AAA growth rate with an AUC of 81.2% (95% CI from 61.1 to 100%). SVM achieved the second highest performance with an AUC of 68.8% (95% CI from 46.5 to 91%). Based on the best performing algorithm, variable importance was estimated. Diameter-diameter ratio (maximum diameter/neck diameter), Tortuosity from Renal arteries to aortic bifurcation, and maximum thickness of the intraluminal thrombus were found to be the most important factors for model predictions. Other factors were also found to play a significant but less important role. A prediction model that can risk stratify AAAs into high and low growth rate groups could be developed by analyzing several factors implicated in the multifactorial pathophysiology of this disease, with the use of machine learning algorithms. Future studies including larger patient cohorts and implementing additional risk markers may aid in the establishment of such methodology during AAA rupture risk estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.