Abstract

Water and nitrogen are abundant in the Earth's interior and atmosphere, and their mixture under high pressure is a fundamental and valuable scientific issue for physics and chemical science. Based on structural prediction and first-principles simulations, we propose that the two nitrogen-rich stoichiometries, H2ON6 and H2ON10, become energetically stable above ∼70 GPa. Further ab initio molecular dynamics calculations indicate that H2ON6 and H2ON10 undergo phase transitions from solid to superionic and finally to fluid phase with increasing temperature. The superionic regions in their phase diagram correspond to the extreme conditions of Earth's mantle, implying that the Earth's interior might be a possible reservoir of the N-rich hydrates. In addition, H2ON6 remains dynamically stable under ambient conditions with an estimated energy density of 6.53 kJ g-1, indicating that it might be a high-energy density material. These results not only provide essential information for the understanding of the Earth's interior, but also provide guidance for the design of high-energy density materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.