Abstract

Successive major landslides during October and November 2018 in Baige village, eastern Tibet, dammed the Jinsha River on two occasions, and the subsequent dam breaches instigated a multi-hazard chain that flooded many towns downstream. Analysis of high-resolution aerial images and field investigations unveiled three potentially unstable rock mass clusters in the source area of the landslides, suggesting possible future failures with potential for river-damming and flooding. In order to evaluate and understand the disaster chain effect linked to the potentially unstable rock mass, we systematically studied the multi-hazard scenarios through an integrated numerical modelling approach. Our model begins with an evaluation of the probability of landslide failure, including runout and river damming, and then addresses the dam breach and resultant flood—hence simulating and visualising an entire disaster chain. The model parameters were calibrated using empirical data from the two Baige landslides. Then, we predict the future cascading hazards via seven scenarios according to all possible combinations of potential rock mass failure. For each scenario, the landslide runouts, dam-breaching, and flooding are numerically simulated with full consideration of uncertainties among the model input parameters. The maximum dam breach flood extent, depth, velocity, and peak arrival time are predicted at sequential sites downstream. As a first attempt to simulate the full spectrum of a landslide-induced multi-hazard chain, our study provides insights and substantiates the value provided by multi-hazard modelling. The integrated approach described here can be applied to similar landslide-induced chains of hazards in other regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.