Abstract

BackgroundA newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation. Our objective was to determine whether dense SNP (single nucleotide polymorphisms) panels can capture the genetic variation due to a simple bi-allelic CNV, with the prospect of including the effect of such structural variations into genomic predictions.MethodsA deletion type CNV on bovine chromosome 6 was predicted from its neighboring SNP with a multiple regression model. Our dataset consisted of CNV genotypes of 1,682 cows, along with 100 surrounding SNP genotypes. A prediction model was fitted considering 10 to 100 surrounding SNP and the accuracy obtained directly from the model was confirmed by cross-validation.Results and conclusionsThe accuracy of prediction increased with an increasing number of SNP in the model and the predicted accuracies were similar to those obtained by cross-validation. A substantial increase in accuracy was observed when the number of SNP increased from 10 to 50 but thereafter the increase was smaller, reaching the highest accuracy (0.94) with 100 surrounding SNP. Thus, we conclude that the genotype of a deletion type CNV and its putative QTL effect can be predicted with a maximum accuracy of 0.94 from surrounding SNP. This high prediction accuracy suggests that genetic variation due to simple deletion CNV is well captured by dense SNP panels. Since genomic selection relies on the availability of a dense marker panel with markers in close linkage disequilibrium to the QTL in order to predict their genetic values, we also discuss opportunities for genomic selection to predict the effects of CNV by dense SNP panels, when CNV cause variation in quantitative traits.

Highlights

  • A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome

  • The aim of this study was to investigate whether a simple deletion CNV can be predicted from dense SNP genotyping data using a multiple regression approach, which, if successful, implies that genetic variation due to this deletion CNV can be predicted in an automated manner by dense SNP genotyping

  • We report the linkage disequilibrium (LD) of a bi-allelic deletion type of CNV with surrounding SNP to determine whether SNP can predict this simple CNV

Read more

Summary

Introduction

A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation. The aim of this study was to investigate whether a simple deletion CNV can be predicted from dense SNP genotyping data using a multiple regression approach, which, if successful, implies that genetic variation due to this deletion CNV can be predicted in an automated manner by dense SNP genotyping To this end, we report the linkage disequilibrium (LD) of a bi-allelic deletion type of CNV (the locus varying in copy number, 2 = normal and 1 = deletion) with surrounding SNP to determine whether SNP can predict this simple CNV. Our approach is general and can be extended to more complex CNV, but estimation of the prediction accuracy of more complex CNV is outside the scope of this paper

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call