Abstract
Two-dimensional ferromagnetic topological semi-metals have attracted much interest owing to their fascinating spintronic applications. Using first-principles calculations, we propose a stable transition metal nitrogen halide compound, namely, VNI monolayer, to display intrinsic ferromagnetism with high Curie temperature TC (∼510 K) and strong out-of-plane magnetism. It is found to be a topological Weyl nodal line material, which can be fully spin-polarized by controlling the on-site Coulomb interaction. Its nodal line can be destroyed by orienting the magnetization axis. Additionally, biaxial strain enables efficient tuning of the magnetic properties by switching the easy magnetic axis from an out-of-plane to in-plane direction with an enhanced TC to 540 K. These results highlight the great application potential of a VNI monolayer in low-dimensional topological magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.