Abstract

In this letter, we proposed the use of feed-forward multilayer perceptron in deep learning-based artificial neural network (ANN) to accurately predict 12 optical parameters of silica-based photonic crystal fiber (PCF) within milliseconds using 6 input parameters. The optimized ANN has 3 hidden layers and each layer has 50 neurons. The PCF has several hexagonal-shaped layers with circular air holes, and it uses silica as the cladding and FK51A glass as the core. The PCF parameters that have been successfully predicted include birefringence, chromatic dispersion, effective area, effective refractive index, nonlinear coefficient, numerical aperture, power fraction, relative sensitivity, V-parameter, and loss profiles such as confinement loss, effective material loss, and scattering loss. The prediction has high accuracy with a loss of only 0.00567 and a learning rate of 0.0001. 7-fold validation and batching are used to increase scalability during validation. The proposed ANN is over 99.9% faster than conventional numerical simulation approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call