Abstract

AbstractThe ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R2 = 0.841) and the BPNN models’ (RMSE = 0.640, R2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call