Abstract

In this work, a geometrical model is established to calculate the wear volume of cutting tool, into which the effects of rake angle, clearance angle, and tool nose radius are successfully integrated. And then the dynamic tool wear process is investigated based on the precision turning of 45 vol%SiCp/2024Al with PolyCrystalline Diamond (PCD) tools. A new evaluation parameter, i.e., tool wear volume rate, is defined to compare the wear resistance of tools with varied geometrical parameters. Experimental results show that tool wear volume rate is closely related to the grain size of PCD and tool rake angle. However, it is independent on tool nose radius. Subsequently, the prediction model of tool wear volume as a function of cutting length is further formulated to characterize the dynamic evolution of tool wear. The validation experiments show that the prediction accuracy is satisfactory, i.e., that the average prediction error is only 6.13%, which indicates that the calculation method and prediction model of tool wear volume proposed in this work are effective. Finally, the application scope of the developed prediction model is further specified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.