Abstract

In order to explore the characteristics of passenger waiting time in high-speed rail hub, this paper analyzed the influencing factors of passenger waiting time, based on the survey of passenger waiting time in high-speed rail hub. And the main influencing factors were screened out using variance analysis. Then the prediction model of passenger waiting time based on BP neural network was established, the parameters of the model were calibrated and the validity was verified. The results show that, travel time in urban area, trip distance, familiarity toward the hub, educational background of passengers, and the type of transportation is the main influencing factor of passenger waiting time in high-speed rail hub, and the average relative error is only 9.2% using the proposed prediction model of passenger waiting time based on BP neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.