Abstract
This paper presents an efficient prediction model for a good learning environment using Random Forest (RF) classifier. It consists of a series of modules; data preprocessing, data normalization, data split and finally classification or prediction by the RF classifier. The preprocessed data is normalized using min-max normalization often used before model fitting. As the input data or variables are measured at different scales, it is necessary to normalize them to contribute equally to the model fitting. Then, the RF classifier is employed for course selection which is an ensemble learning method and k-fold cross-validation (k = 10) is used to validate the model. The proposed Prediction Model for Course Selection (PMCS) system is considered a multi-class problem that predicts the course for a particular learner with three complexity levels, namely low, medium and high. It is operated under two modes; locally and globally. The former considers the gender of the learner and the later does not consider the gender of the learner. The database comprises the learner opinions from 75 males and 75 females per category (low, medium and high). Thus the system uses a total of 450 samples to evaluate the performance of the PMCS system. Results show that the system’s performance, while using locally i.e., gender-wise has slightly higher performance than the global system. The RF classifier with 75 decision trees in the global system provides an average accuracy of 97.6%, whereas in the local system it is 97% (male) and 97.6% (female). The overall performance of the RF classifier with 75 trees is better than 25, 50 and 100 decision trees in both local and global systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.