Abstract
In this paper we introduce a procedure to compute prediction intervals for FARIMA (p d q) processes, taking into account the variability due to model identification and parameter estimation. To this aim, a particular bootstrap technique is developed. The performance of the prediction intervals is then assessed and compared to that of standard bootstrap percentile intervals. The methods are applied to the time series of Nile River annual minima.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.