Abstract

The fiber-reinforced polymer composites are important alternative for conventional structural materials because of their excellent comprehensive performance and weight reduction. The mechanical properties of such composite materials are mainly determined by the fiber orientation induced through practical manufacturing process. In the study, a through process modeling (TPM) method coupling the microstructure evolution and the mechanical properties of fiber-reinforced composites in practical processing is presented. The numerical methodology based on the finite volume method is performed to investigate three-dimensional forming process in the injection molding of fiber-reinforced composites. The evolution of fiber orientation distribution is successfully predicted by using a reduced strain closure model. The corresponding finite volume model for TPM is detailedly derived and the pressure implicit with splitting of operators (PISO) algorithm is employed to improve computational stability. The flow-induced multilayer structure is successfully predicted according to essential flow characteristics and the fiber orientation distribution. The mechanical properties of such anisotropy composites is further calculated based on the stiffness analysis and the Tandon–Weng model. The improvement of mechanical properties in each direction of the injection molded product are evaluated by using the established mathematical model and numerical algorithm. The influences of the geometric structure of injection mold cavity, the fiber volume fractions, and the fiber aspect ratios on the mechanical properties of composite products are further discussed. The mathematical model and numerical method proposed in the study can be successfully adopted to investigate the structural response of composites in practical manufacturing process that will be helpful for optimum processing design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.